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Fokker-Planck 

The Fokker-Planck equation for the distribution of position and velocity of a 
Brownian particle is a particularly simple linear transport equation. Its normal 
solutions and an apparently complete set of stationary boundary layer solutions 
can be determined explicitly. By a numerical algorithm we select linear combi- 
nations of them that approximately fulfill the boundary condition for a com- 
pletely absorbing plane wall, and that approach a linearly increasing position 
space density far from the wall. Various aspects of these approximate solutions 
are discussed. In particular we find that the extrapolated asymptotic density 
reaches zero at a distance x M beyond the wall. We find xM = 1.46 in units of the 
velocity persistence length of the Brownian particle. This study was motivated 
by certain problems in the theory of diffusion-controlled reactions, and the 
results might be used to test approximate theories employed in that field. 

KEY WORDS: Brownian motion; Fokker-Planck equation; boundary layer; 
Milne problem; half-range expansion; diffusion-controlled reactions. 

1. I N T R O D U C T I O N  

The flow of a r eac t an t  in a d i f fus ion-cont ro l led  reac t ion  can  of ten be 
desc r ibed  in terms of Brownian  m o t i o n  of a par t ic le  in the presence of 
abso rb ing  or  pa r t i a l ly  abso rb ing  boundar ies .  (1,2) The  s implest  descr ip t ion  is 
o b t a i n e d  th rough  a di f fus ion or  Smoluchowski  equa t ion  for  the p robab i l i t y  
dens i ty  of the par t ic le  pos i t ion  with ei ther  abso rb ing  or  " rad ia t ive  ''(1) 
b o u n d a r y  condi t ions .  In  the fo rmer  case the dens i ty  is pu t  equal  to zero at  
the b o u n d a r y ,  while in the la t ter  the ou twa rd  n o r m a l  flux is p r o p o r t i o n a l  to 
the dens i ty  with a phenomeno log i ca l  p ropor t i ona l i t y  constant .  This  t radi -  
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tional theory has often been criticized ( 1,2),2; in particular there seems to be 
no clear way of relating the proportionality constant in the radiative 
boundary conditions to a microscopic picture of the reaction kinetics. 

The reasons for the inadequacy of the Smoluchowski equation can be 
exhibited by inspecting its derivation from a more detailed description of 
Brownian motion due to Klein O) and Kramers, ~4) in terms of the probabil- 
ity density for the velocity and position of the Brownian particle. The 
Smoluchowski equation can be recovered ~5) from this description via a 
procedure of the Chapman-Enskog type. This derivation breaks down, 
however, near a wall or at places where the potential varies rapidly; there a 
so-called kinetic boundary layer occurs. ~6) This breakdown is caused by the 
large deviations from the Maxwellian velocity distribution that must occur, 
e.g., near an absorbing boundary, whereas for validity of the Smoluchowski 
equation approximate local equilibrium is required. 

Exactly solvable problems in which a kinetic boundary layer occurs 
are extremely rare. Some solvable cases are known r for the BGK model, 
a drastically simplified linearized Boltzmann equation, and for some modi- 
fications of it; a few more for the one-speed neutron transport equation, 
which is equivalent to the equation of radiative transfer for gray matterJ 8) 
Therefore an at least partially solvable Brownian motion problem exhibit- 
ing a nontrivial kinetic boundary layer should be of some intrinsic interest, 
apart from its utility for testing approximate descriptions of diffusion- 
controlled reactions. 

The case studied in the present paper is that of Brownian motion in a 
half-space bounded by a plane wall. Moreover, we restrict ourselves to the 
case in which the wall absorbs all particles impinging on it; some cases with 
selectively absorbing walls will be treated in a subsequent s t u d y .  O) T h e  

problem treated in the present paper was posed long ago by Chang and 
Uhlenbeck,~ ]0) but it has thus far resisted attempts at an exact solution. As 
a further restriction, we shall consider only stationary solutions with trans- 
lational invariance parallel to the wall. Thus we are led to the Brownian 
motion analog of the well-known Milne problem in radiative transfer 
theory. 

The solution of the Milne problem (and of the several solvable 
problems for the BGK model) proceeds in two steps. First one constructs a 
special set of stationary solutions that depend, in general, exponentially on 
the distance to the wall. Secondly one uses a special expansion theorem 
(half-range completeness) to combine them in such a way that the bound- 
ary condition is fulfilled. In our case the special solutions can be con- 
structed explicitly, as was first shown by Pagani. ~11~ His results are reca- 

2 Reference 1 and 2 contain many references to earlier work in this field. 
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pitulated, to the extent that we need them, in Section 2. However, a 
half-range completeness theorem does not yet exist. We therefore used a 
numerical procedure, described in Section 3, to determine linear combina- 
tions of the special solutions that come closest, in a sense to be specified, to 
obeying the requisite boundary condition. As the number of special solu- 
tions in the linear combination increases, these approximate solutions 
appear to exhibit a slow but steady convergence towards a solution with 
correct behavior at the wall. 

The numerical results are presented and discussed in Section 4. In 
addition to a three-dimensional picture of the distribution over position and 
velocity in the boundary layer we present results for the velocity distribu- 
tion at the wall and for the mean density and the mean-squared velocity as 
a function of the distance from the wall (the mean velocity follows directly 
from probability conservation). Far from the wall the density increases 
linearly with distance, as one expects from the diffusion equation. When 
this asymptotic solution is extrapolated across the boundary region it 
reaches zero not at the wall (as the solution of the diffusion equation with 
absorbing boundary would) but at some distance beyond it. The value we 
find for this "Milne extrapolation length" is, in the appropriate dimension- 
less units, approximately twice the value found in the radiative transfer 
problem. The density in the actual solution is everywhere lower than that of 
the extrapolated asymptotic solution, but of course it stays finite at the 
wall. The mean-squared velocity increases as one approaches the wall, but 
the spread in velocity around the mean, which may be called the 
"temperature" of the particles absorbed or transmitted at the wall, becomes 
significantly lower than that in the bulk. 

2. S T A T I O N A R Y  SOLUTIONS OF THE F O K K E R - P L A N C K  
EQUATION 

In this paper we discuss the one-dimensional Fokker-Planck equation 

OP(u,x,t)ot -[[Y( lmfl On 2-~2 + uuU~ ) - u -~xO ] P(u'x't) (2.1) 

The function P(u,x, t) denotes the probability distribution for the compo- 
nents u and x of the velocity and position of the Brownian particle 
perpendicular to the plane wall, m is its mass, y the friction coefficient for 
its motion through the fluid, and fl equals (k s T)-1. Stationary solutions of 
(2.1) on the range x > 0 can be made into stationary solutions of the 
three-dimensional problem in a half-space bounded by a plane wall by 
means of a multiplication with a Maxwell distribution for the velocity 
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components parallel to the wall (and the constant function with respect to 
the parallel components of the position). Our discussion of the stationary 
solutions of (2.1) follows the treatment by Pagani (11) and is similar to a 
discussion of nonstationary plane-wave solutions by R6sibois. ~2) 

We begin by observing that the operator 

1 8 2 ~ u  
= w _ _  + u ( 2 . 2 )  C mfl ~u 2 

has eigenvalues - n (n = O, 1, 2 , . . .  ) and associated eigenfunctions 

= e n H . [ ( � 8 9  2 q)~(u) 5mflu ] (2.3) 

where H, (x )  is the nth Hermite polynomial in the convention used by 
Erd61yi et al.(~3) and c, a normalization constant. From the orthogonality 
property of the Hermite polynomials, and from the form of the first two of 
them, it follows that in any linear combination 

f(u,  x) = ~ a n (x)q~, (u) (2.4) 
n 

the coefficient ao(X ) is proportional to the probability density in x space 
and al(x  ) to the probability current. Normal stationary solutions ~5) must be 
such that ao(X ) is a stationary solution of the diffusion equation 

Oao(x,t) _ 1 22 ao(X,t) (2.5) 
Ot mfl7 Ox 2 

Thus ao(X ) must depend linearly on x. The two independent stationary 
solutions of (2.1) corresponding to densities 1 and x are 

+o(U, x) = (m f l / 2~ ) l / 2  exp[ - (1 /2 )mf lu  2] (2.6) 

and 

~ ( u ,  x) = (mfl /2~r)l /2(x  -- T - lu)  exp[ -- ( l / 2 ) m f l u  2 ] (2.7) 

as one checks easily by substitution. 
To obtain nonnormal stationary solutions we try the ansatz 

~(u, x) = exp[ - ~ v x  - Xu]x(u) (2.8) 

Substitution in (2.1) and the stationarity requirement lead to 

- - + ~ u  u - 2 X  
m/~ 0u 2 ~-~ + (~ - x)u + ~ x(u) = o (2.9) 

Comparison with (2.2) shows that with the choice 

x = X, X 2 = nmfl (n = O, 1,2 . . . .  ) (2.10) 
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one obtains solutions of the form 

~+_,(u,x) = c" H n ( [ ( 1 / 2 ) m f l ] ' / 2 [  u -T- 2(n/mj3 )]/2] } 

e x p ( - ( 1 / 2 ) m f l [ u  -T-(n/mfl)'/212-7 - yx(nmfl) '/2 } (2.11) 

with c" a normalization constant. The solution with n = _+ 0 is proportional 
to ~ko(U,X) given by (2.6); we shall find it convenient to choose a slightly 
different normalization for ~0(u, x) later. 

It was shown by Pagani (10 that the ~bm(U,O ) obey the orthogonality 
relations 

~+oo ~ 0)l~n (U , 0)U exp [(1/2)mflu2] du=O 
for m :~ n; m,n =0,_+ 1 , _ 2  . . . .  (2.12a) 

and 

f_+cxD corm(u, 0)~;(/./, 0) U exp[ (1/2)mflu 2 ] du= O f o r m  = _1 ,  ___2 . . . .  

(2.12b) 

In particular, (2.12a) with n = 0 shows that none of the functions ~,(u, x) 
with n = +__ 1, _+2 , . . .  carries a probability current. In addition it was 
shown that the set of functions consisting of the q~.(u, 0) with n = 0, + 1, _ 
2 . . . .  and ~k~)(u, 0) constitute a basis in the space of functions X(u) for 
which ux(u ) is square integrable on the full range - oo < u < + oc. These 
orthogonality and completeness relations would enable one to solve bound- 
ary value problems of the following type: determine the stationary solution 
of (2.1) when P(u, 0) is prescribed. 

Unfortunately, the boundary value problems encountered in practice 
are mostly of a different type. For an absorbing boundary at x = 0 of a 
medium occupying the region x > 0 the boundary condition at the wall 
affects only the positive velocities: 

e(u, 0) = 0 for u > 0 (2.13) 

It is supplemented by conditions on P(u, x) far from the wall. The problem 
that poses itself naturally is: determine a (stationary) solution of (2.1) 
satisfying (2.13) that approaches a normal solution, i.e., a linear combina- 
tion of (2.6) and (2.7), at large x. Such a solution must clearly have the 
form 
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According to the remark following (2.12b), the constant 5 0 can be fixed by 
specifying the stationary probability current towards the wall. The remain- 
ing problem is to choose the d, in such a way that (2.13) is satisfied: 

o o  

r + ~ d.q~+.(u,O) = 0 f o r .  > 0 (2.15) 
n = 0  

A sufficient condition for the existence of a unique solution to (2.15) is: the 
functions ~,(u,O) (n = O, 1 , 2 , . . .  ) are linearly independent and form a 
basis in a suitable class of functions on the range 0 < u < + oo. The 
solution can be written in closed form if we succeed in finding functions 
~n(u) such that 

fO~ du= ~nm (n,m = 0, 1 , 2 , . . .  ) (2.16a) 

o o  

2 I~n(U'O)~n(U')= ~(U -- Ut)[U,U'~ (0 ,  ~ ) ]  ( 2 . 1 6 b )  
n = 0  

(half-range orthogonality and completeness theorems). For the BGK 
model (7) and for the one speed neutron transport equation (8) theorems of 
this type could be proved (with a continuous index n). For our case such 
theorems are not yet available. Hence we proceeded to treat the problem 
(2.15) by numerical means. 

3. THE NUMERICAL SOLUTION PROCEDURE 

To find an approximate numerical solution of the problem (2.15) one 
may determine for various values of N the quantities d ff that minimize 

oo 2 - -  2 fo Iq~N(U)l O(u)du= oN (3.1) 
with 

N--1 

~N(U) = ~)(U, 0) + 2 dN~,(u'O) (3.2) 
n = 0  

and p(u) a suitably chosen positive weight function. Variation of (3.1) leads 
to 

N - I  
1 . + E  N_ Gnma~ - -  0 (n = 0, 1, 2 , . . .  ) (3.3 t 

m = 0  

with 

and 

o o  ! 

1.= fo q,o(u,O)q~.(u,O)o(u)au (3.4a) 

G,,, = foo~176 u, O)~m( U, O)p( u) du (3.4b) 
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If the q~n(U, 0) have the half-range orthogonality and completeness 
properties stated in the preceding section, the D~ formed with the aid of the 
solutions of (3.3) should approach zero, and the d~ themselves should 
approach well-defined limits for N ~ oo. Moreover, the functions 

N - I  

~ff(u) ~ ~ (ah71 )nml~m(U,O)p(u) (3.5) 
m ~ 0  

then approach the ~n (u) of (2.16). One expects that the required complete- 
ness properties hold for a broad class of weight functions p(u), if at all. In 
view of the speed of convergence of our procedure and the manageability 
of round-off errors an appropriate choice appears to be 

p(u) = u exp [ (1/2) m•u 2 ] (3.6) 

For this choice explicit, albeit complicated, expressions for I m and G,,m can 
be found, as is discussed further in the Appendix. 

4. RESULTS 

The coefficients d f  were determined from (3.3) for all, N < 140 and all 
n < N, with the choice (3.6) for the weight function. We shall first present a 
few aspects of the resulting approximate solution of type (2.14) in graphical 
form, then a table with more precise numerical values, and finally we shall 
discuss the possibility of extrapolating some of the results towards N = oo. 
More detailed results are given elsewhere. ~ 14) The calculations were carried 
out on the CYBER-175 of the RWTH Computing Center. 

In Fig. 1 we show the approximation Plno(U,X) to the solution (2.14) 
with boundary condition (2.15), using 140 boundary solutions with coeffi- 
cients determined from (3.3). As our unit of velocity we chose the thermal 
velocity (mr) -1/2 and as our unit of length the distance traveled by a 
particle of unit velocity during a velocity decay time ~-1. This "velocity 
persistence length" plays a role similar to that of the mean free path in 
kinetic theory. ~5) The solution is shown for ]u[ <~ 3 and 0 < x < 3. The units 
for P(u, x) are arbitrary, and the constant ~0 in (2.14) is hence irrelevant. 
For x = 3 the solution is already close to a Maxwell distribution. At x = 0 
the deviations from the correct boundary condition (2.15) are still notice- 
able; the probability distribution Pl4o(U, 0) even assumes negative values in 
the "forbidden region" u > 0. 

To show the convergence of PN(u, 0) with increasing N in more detail 
we present in Fig. 2 this function for N = 35, 70, and 140. For large lul the 
curves are indistinguishable, and the region in which appreciably negative 
probabilities and violation of (2.15) occur shrinks roughly equally with each 
doubling of N. Eventual convergence towards a function satisfying (2.15) is 
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Fig. 2. 

"3  -2  - I  0 I 2 :3 

The velocity distribution at the wall for the approximate solutions with 140, 70, and 
35 boundary layer solutions (the leftmost curve corresponds to N = 140). 

indicated, but it is equally clear that an unrealistically high N would be 
needed to exhibit it on the scale of this figure. 

In Fig. 3 we show the integral n140(x ) of P140 (u, x) over velocities, i.e., 
the probability density in position space, for a value of ~0 that is unity in 
our system of units, in which mfl = 3' = 1. For large x this function should 
approach 

n~]o(X ) = x + d14~162 x + xff  ~ (4.1) 

since all ~n(u,x)  with n > 0 decay exponentially with x. The factor 
(2~r) 1/2 is caused by our normalization Goo = 1. The function (4.1) is 

J 

J 

J 

J 

f 

J 

. I l " 

J 

Fig. 3. The density as a function of the distance from the wall for the approximate solution 
with N = 140 (drawn curve) and its asymptote (broken line). The intersection of the asymptote 
with the horizontal axis is the approximate Milne extrapolation length x ~  ~ 



578 Burschka and Titulaer 

indicated in Fig. 3 by a broken line. The quantity 

XM = lim x g (4.2) 
N---~ oo 

is the analog of the Milne extrapolation length for our problem. On the 
scale of Fig. 3 the c u r v e s  n35(x  ) and n70(x  ) would be displaced slightly in 
the vertical direction with respect to nla0(X), but the curves nN(x ) - n)S(x) 
would be indistinguishable on this scale for x ~> 0.1. 

In view of the orthogonality relations (2.12) one finds for the first two 
moments of PN(u, x) 

nN(x)(u)n(X ) =_fj+ ue (u,x)clu= - 1  (4.3) 

which expresses conservation of probability in the interior, and 

+ o o  2 nN(X)(U2>N(X) ~ f-~o U PN(u,x)du 

= x + (2~r)]/2d~V = n~S(x) (4.4) 

Therefore the average squared velocity of a particle at x in units of (mr) -  i 

is given by n~S(x)/nN(x), a function shown in Fig. 4 for N = 35, 70, and 
140. Since nN(X ) b~ecomes progressively smaller compared to n~S(x) as one 

1.3 

1.2 

1.1 

1.O 
I T 

0 1 2 3 
The mean-squared velocity as a function of the distance from the wall for the Fig. 4. 

approximate solutions with N = 140 (upper curve), N = 70, and N = 35 in units of the squared 
thermal velocity. 
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approaches the wall, as is evident from Fig. 3, the mean-squared velocity 
becomes correspondingly larger. In Fig. 5, we give the spread in velocity 

[ (u  2) _ ( u ) 2 ] N ( x )  = n } S ( x ) / / n N ( x )  _ [nN (x) ] -2 (4.5) 

which decreases strongly as one approaches the wall. If one assumes that 
particles that reach the wall emerge on the vacuum side without altering 
their velocity, then the value of (4.5) at the wall might be interpreted as a 
"temperature" for the velocity component perpendicular to the wall in the 
emerging beam of Brownian particles. For N -- 140 its value is 0.464 times 
the value in the bulk. 

Of course our results are reliable only if the fin(u,0) with n = 0, 1, 
2 . . . .  are linearly independent and complete on the positive half-line with 
weight function O(u). As a test of the independence we checked whether 
det GN might approach zero with increasing N. This is clearly not the case; 
the values stabilize at a value of roughly 0.9. Lack of completeness might 
manifest itself in the form of a nonzero limit of the distance D~ defined in 
(3.1). In Table I we give this quantity for the values N = 20, 60, 100, and 
140. Further we give the approximate extrapolation length x~ and the 
values for the density and the mean-squared velocity at the wall. All are 
smooth functions of N for intermediate values of N. The four functions 

.9 
J J 

J 

.8 

.7 

.6 

.5 

1.0 

0 1 2 3 
Fig. 5. The spread in velocity as a function of the distance from the wall for the approximate 
solutions with N = 140 (lower curve), N = 70, and N = 35 in units of the squared thermal 
velocity (curves only partially resolved). 
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Table I. The Violation of the Boundary Condition, 
D~ [Eq. (3.1)], the Approximate Milne Extrapolation Length x~, 

and the Approximate Density nN(0 ) and Mean Square 
Velocity (uz)N(0) at the Wall in an Approximate Solution of the 

Boundary Layer Problem with N Boundary Layer Solutions 
for Some Values of N 

i i i 

N D2N X N nN(O ) (U2)N(O) 

20 0.04680 1.4078 1.1138 1.2639 

60 0.02743 1.4279 1.0774 1,3253 

100 0.02136 1.4344 1.0627 1.3499 

140 0.01811 1.4380 1.0537 1.3648 
i 

could be fitted well with a three-parameter extrapolation formula of the 
type 

q~ = q o~ + a N - 8  (4.6) 

In Table II we give the values for qoo for the four quantities of Table I. To 
convey an idea of the reliability of the extrapolation we made separate fits 
employing the values of the four quantities in the three intervals 20 < N 
< 60, 60 < N < 100, and 100 < N < I40. The last line gives the value of 
for the third interval. The extrapolation results for D 2 are quite compatible 
with limN~ooD 2 = 0, and they do not vary too much when the interval is 
changed. Similarly the extrapolated values for the Milne extrapolation 
length are practically the same for the three intervals. Other three- 
parameter fits(~4) for x g  also yield x~/= 1.46, but their quality is somewhat 
less than that of (4.5). 

The density and the mean-squared velocity at the wall, which depend 
more sensitively on the higher boundary solutions, converge much more 
slowly, as is evident from the tables, and have not settled down yet at 
N = 140. As a check we can use the relation (U 2) = n~,s/n, which is exact 
and obeyed by the entries in Table I, but incompatible with an N depen- 

Table II. Extrapolated Values for the Quantities of Table I Using the 
Fit (4.6) for the Three Intervals Indicated in the First Column. The Last 

Row Gives the Exponent in (4,6) for the Third Interval. 

Interval D ~  x~t n~(0) (u2)~(0)  

21-60 - 0.00044 1.4611 0.8940 1.6013 

61-100 - 0.00036 1.4610 0.9078 1.5948 
101-140 - 0,00028 1.4609 0.9136 1.5901 

Exponent - 0.48 - 0 . 4 3  - 0.18 - 0.19 
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dence of type (4.5) for all three quantities. The discrepancy decreases, 
however, from 2.1% for the first interval to 0.56% for the last one. The 
spread in velocity at the wall does not reach its asymptotic N dependence 
in the range of N values calculated by us; it shows a flat maximum near 
N- -  100 at a value around 0.46 (see Fig. 5). Substitution of extrapolated 
values in (4.4) indicates a limiting value of around 0.40, but the slow 
convergence does not inspire much confidence in this extrapolation. 

In conclusion, our procedure yields a good qualitative picture of the 
boundary layer and a value for the extrapolation length that should be 
reliable up to the third significant digit. The slow convergence near x = 0, 
u = 0 precludes a precise determination of the velocity distribution at the 
wall and of its moments. An attempt to determine ~,(u) of (2.16) by 
extrapolation of the expressions (3.5) did not yield reliabile results due to 
slow convergence. 

A P P E N D I X  

In this Appendix we outline the computation of the matrix elements 
Gin, of (3.4b) that involve the tPn(U,O ) of (2.11). By the transformation 
u(�89 mfl) 1/2 = t and absorption of some constant factors into the normaliza- 
tion constants c~ to form c~' we obtain 

Gnm= C, Cm ,, OOtH,[ t __ (2n)l/2]Hm[ t -- (2m)l/2] 

e x p [ t -  ( n / 2 ) ' / 2  (m/2) , /2]-Zdt  (A.1) 

The factor t can be eliminated by using ~3) 

tHn(t - s) = sH.( t  - s) + nHn_,(t - s) + 1H.+l(t  - s) (A.2) 

Then by application of 
t /  

0 m ( - 2 s )  H._m(t  ) (A.3) 

which follows immediately from (13) 

H,(  t) = ( -  1)'exp( t2)( d,  / dt n) exp( - t 2) (A.4) 

the integrals resulting from (A. 1) by substitution of (A.2) can be expressed 
in terms of integrals of the type 

Knm ( a) = f'__~aH,( OHm(t) exp( -  t 2) dt (A.5) 

Integration by parts and application of (A.5) and H',(t) = 2nil ,_ x(O yields 
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the recursion relation (for m > 0) 

Knm(a ) = H n ( - a ) H m _ l ( - a ) e x p [ - a  2] + 2nK,_1,m_~(a ) (A.6) 

F r o m  this recursion relat ion and  gnm(a ) = gmn (a) follow closed expressions 
for  gnm with n 4: m. The  expression for Knn involves also Koo(a ), which is 
related simply to the error function. In  this way  anm is first expressed in 
3(n + 1)(m + 1) different Kpq(a), each of which is in turn expressed in 
min(p ,  q ) +  ~pq easily calculated terms. The  c;,' are chosen such that  G~n 
= 1. The  computa t ion  of the I ,  given by  (3.4a) was carried out in a 
complete ly  analogous fashion. 
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